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In this perspective article, we present the project initiative
Materials-open-Laboratory (Mat-o-Lab) that aims to provide a col-
laborative environment for domain experts to digitize their
research results and processes and make them fit for data-driven
materials research and development. The overarching challenge
is to generate connection points to further link data from other

domains to harness the promised potential
of big materials data and harvest new
knowledge.

1. Introduction

Materials science and engineering (MSE) is
an interdisciplinary field of its own that
touches on both natural sciences and
engineering. It aims to investigate the
relationship between the manufacturing
process, resulting microstructure, and
properties to develop materials with opti-
mized characteristics and maximize their
reliability, service life, and recyclability.[1,2]

A special feature and a challenge at the
same time are the many structural scales that must be taken into
account. They range from the atomic scale (nm) to themicro- (μm)
to the macroscale (from mm to m). Another challenge is the
variety of investigation methods, standards, and models used for
characterization in this highly interdisciplinary field, up to and
including the use of modeling and simulation techniques.[3–6]

The data generated in MSE is therefore per se characterized by a
high degree of heterogeneity. In addition, the increasing integration
of (partly robot-based) high-throughput methods and experiments,
the continuously growing computing power and its resources, and
the variety of software-based analysis options lead to a very high
rate of data creation in a multitude of different formats.[7,8]

For some time now, the digital transformation has also been
changing and shaping the MSE research landscape.[9,10]

However, the promise of successively transforming the gener-
ated research data into knowledge by applying data-science
driven methods (such as machine learning [ML] and deep learn-
ing approaches) and thus accelerating material discovery and
material design according to the fourth paradigm (data-driven
approach) has yet to be fulfilled.[11–14] In the context of optimal
handling of MSE research data, the FAIR data principles provide
orientation and enable the fundamental challenges of digitaliza-
tion to be addressed. According to these principles, research data
and corresponding metadata should be findable, accessible,
interoperable, and reusable.[15] A powerful tool for implementing
these principles are modularizable and extensible ontologies.
They allow to semantically structure and annotate raw data,
processed data, and contextual data using a commonly shared,
consistent, and understandable vocabulary based on fundamen-
tal terms.[7,16–20]
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The amount of data generated worldwide is constantly increasing. These data come
from a wide variety of sources and systems, are processed differently, have a
multitude of formats, and are stored in an untraceable and unstructured manner,
predominantly in natural language in data silos. This problem can be equally applied
to the heterogeneous research data from materials science and engineering. In this
domain, ways and solutions are increasingly being generated to smartly link
material data together with their contextual information in a uniform and well-
structured manner on platforms, thus making them discoverable, retrievable, and
reusable for research and industry. Ontologies play a key role in this context. They
enable the sustainable representation of expert knowledge and the semantically
structured filling of databases with computer-processable data triples.
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Different types and levels of ontologies exist and can be
subdivided into three main categories. 1) Top-level (or upper)
ontologies (TLOs) describe general terms that are common
across many domains. One example of a standardized upper
ontology is the basic formal ontology (BFO). 2) Midlevel (or core)
ontologies (MLOs) represent higher-level, more abstract concepts
that enable the complex and expressive domain ontologies to be
interconnected. 3) Domain (or domain-specific) ontologies are
developed based on explicit expert knowledge and represent con-
cepts that belong to specific domains, for example, specific pro-
cesses or research methods. Thus, this knowledge is also
prepared in an organized and sustainable way comprehensible
to others.[7,21,22]

While ontologies provide a formal description of the data,
specific types of databases, so-called triple stores, typically support
ontologies as database schema models. Triple stores allow storing
data in a machine-processable form in three linked data pieces,
so-called triples which describe subject–predicate–object relation-
ships. Besides the direct integration of ontologies, the major ben-
efits of using triple stores are linkage of diverse data and time
efficiency of data retrieval: evolving data from heterogeneous sour-
ces can be dynamically queried using semantic search functions
and can be further enriched to build knowledge graphs. In addi-
tion, the application of inference-based techniques such as reason-
ing aims to enable the retrieval of implicit knowledge.[17,19,20,23–26]

While the technological basis can be directly established with
existing methods, there is still a great demand for action,
especially in data exchange and data sharing culture. This does
not only require customized data management platforms with
user-definable search, visualization, and analysis options but also
community-driven MSE digitalization initiatives and platforms
that promote this practice.[23]

Pioneering among the MSE digitalization initiatives, the
Materials Genome Initiative (MGI) was launched in 2011, whose
primary goal was to accelerate the discovery and deployment of
new advanced materials systems at a fraction of the cost. MGI
provides the necessary materials innovation ecosystem, consist-
ing of a digital data infrastructure including computational and
experimental tools.[27,28]

Complementary current initiatives include the MaterialDigital
(PMD) innovation platform, which was launched in 2019 by a
German consortium. It aims to use newly generated database
and software tools to better understand the properties and
behavior of materials and optimize them in a more targeted
manner to make production processes more efficient. In this
context, partner projects from science and industry are working
together to establish a virtual materials data space and thus
jointly implement and sustainably design digitization tasks for
materials and their production.[29]

Such large community efforts make it possible to develop and
implement standardization at different levels close to MSE
applications, concerning, for example, data formats, terminologies,
ontologies, evaluation routines, with the aim to establish and accel-
erate the digital transformation of MSE.[30] Interdisciplinary
research fields such as MSE require standardized digital workflows
for covering a diverse set of data conversion and enrichment
pipelines (e.g., with respect to data cleaning, processing, and anno-
tation) and for integrating heterogeneous data sources using data
management tools and developed MSE ontologies.

An important aspect in this context is the integration of
already existing databases with specific (meta)data structures.
Recently, the Event-Sourced Architecture for Materials
Provenances (ESAMP) database, developed for the storage of
materials research data, demonstrated the added value of com-
prehensive (meta)data structure modeling.[31] The instantiation
of 6 million measurements of 1.5 million samples from the
Materials Experiment and Analysis Database (MEAD) enabled
specific structured query language (SQL) queries, analysis, and
knowledge generation from the records of sample origin, per-
formed experiments, and derived results thus deposited.[32]

Another approach is used in the Experiment Specification,
Capture and Laboratory Automation Technology (ESCALATE)
open-source software pipeline for which an ontological frame-
work enables the acquisition of a comprehensive and extensible
(meta)data structure from chemical experiments, leading to a
final curated data frame.[33] Finally, the example of the high-
throughput experimental materials (HTEM) database highlights
how in-depth (meta)data structuring in materials science can be
effectively used and transferred based on an advanced laboratory
information management system (LIMS). The latter system
is responsible for automatically harvesting, indexing, and archiv-
ing experimental (meta)data into a data warehouse.[34] These
approaches also highlight the importance of properly document-
ing the origin of data and changes to the data over time as part of
a comprehensive provenance management. The well-structured
and enriched datasets may serve as high-quality input for model-
ing and ML approaches on data management platforms.

To be able to transfer data-driven platforms into both research
and industrial applications, it is essential to also provide intuitive
user interfaces (UIs) and extended documentation with user and
developer tutorials. So far, the MSE field has been missing a per-
spective on a one-stop-shop solution for representing materials
data and knowledge meeting the abovementioned community
requirements.

In this publication, details on a corresponding current project,
the joint initiative being Mat-o-Lab of Bundesanstalt für
Materialforschung and -prüfung (BAM)[35] and Fraunhofer
Group Materials and Components (MATERIALS),[36] are out-
lined. In this context, the challenges and tasks associated with
digitization in MSE will be generally discussed and put in
relation to the initial approaches and solutions of the particular
project. To provide a comprehensive overview, first, the back-
ground and design concept of the joint initiative is introduced
in Section 2 of this work. The following two Sections 3 and 4
highlight different types of ontologies, that is, top-level, mid-
level, and domain ontologies, going into more detail about their
usage and development. Section 5 presents the Data Space con-
cept chosen in Mat-o-Lab. Here, the intended implementations
of the data in triple store, data sovereignty, and data exchange are
discussed. Aspects of scientific simulation in the field of
MSE, workflows for data processing, and model parameter
determination are considered in Sections 6 and 7. Finally, the
much-enhanced availability of comprehensive machine-readable
data will enable data-driven materials research. Data science
approaches, based on ML or sequential learning, are addressed
in Section 8. The paper concludes with our vision on the
opportunities for future digital-supported materials research
and development. Interested parties are kindly invited to
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participate in refining the initial concepts and approaches of our
project.

2. The Mat-o-Lab Approach

The Mat-o-Lab project stands for the digitization of materials and
components along their entire life cycle. Using specific material
examples and use cases, applicable and practical solutions for the
overarching digital challenges are developed and made available
for public use following the Materials Data Space concept.[36]

Essential results (datasets, ontologies, tools for data structuring,
and data analysis) from previous and ongoing research projects
will be consolidated and improved in a targeted manner.
Mat-o-Lab stands for a new, open, and agile collaboration
between the institutes of the Fraunhofer Group Materials and
Components (MATERIALS), the BAM institute, and interested
partners from industry and academia. In fact, Mat-o-Lab aims
to actively network with similar groups and organizations that
share their interests and progress.

The project is divided into three innovation stages. In its first
stage, Mat-o-Lab is focused on a specific use case of aluminum
alloys for elevated temperature applications. Existing data on this
topic, established in previous joint research projects of the proj-
ect partners, are semantically structured and transferred into a
corresponding repository. In a second stage, the developed struc-
tures and toolchains are adopted for two additional use cases
which cover a second material class (e.g., polymers),
thereby extending the range of covered characterization and sim-
ulation methods and refining toolchains for the development of
domain-specific ontologies. The ontologies are developed in a
collaborative manner by multiple domain experts according to
existing standards or scientific best practices. The proposed
ontology architecture offers high degrees of granularity to cap-
ture every aspect of the characterization process, ensuring
research reproducibility and dataset compatibility. The final third
stage will open the project for selected external partners from
academia and industry to extend the work on data exchange pro-
cesses toward data curation and brokerage. Most importantly,
crosslinks from basic materials research to design and produc-
tion will be established in this phase, thereby allowing to repre-
sent the full development chain for materials applications.

The three-stage concept allows for a continuous up-scaling of
the developed MSE framework. In each stage, a manageable
degree of complexity is maintained as the scope of considered
fields and methods and the related requirements for their digital
representation are clearly defined. An agile management process
and digital communication strategy were introduced to meet the
needs for crossinstitutional collaboration.

Accompanying stages 1 and 2, five teams were set up. The
teams focus on 1) setting up a collaborative IT infrastructure;
2) defining a common data structure philosophy for materials
data (ontologies, workflow tools, exemplary datasets); 3) defining
digital representations of microstructural data and analysis meth-
ods; 4) establishing similar ontology-based descriptions of
mechanical data and characterization methods; and 5) linking
these experimental data with materials models by establishing
automated workflows for the model calibration processes.

To avoid any divergent developments, both within the three
project stages and the different expert teams, clear guidelines
are mandatory for the daily work in the project. The
Mat-o-Lab teams are committed to 1) using similar toolchains
for domain ontology development and referencing to similar
TLOs and MLOs; 2) applying similar workflows for data structur-
ing and fulfilling the requirements of the overall data space con-
cept; and 3) providing data concepts that allow subsequent
automated data analyses and model calibration.

Details on these key elements of the Mat-o-Lab framework will
be outlined in the following sections, thereby opening a general
perspective on the implementation of semantic web technologies
in MSE in current and future projects.

3. Top-Level and Mid-Level Ontologies

For discovery, retrieval, exchange, as well as integration and
analysis between different networks, information systems, and
applications, heterogeneous data, as well as their contextual
information, need to be converted into a computer-
processable language.[15] Ontologies play a central role in this
process. They represent a way to describe entities (classes and
instances) from a certain area of reality, as well as their relation-
ships to each other, in formal language. The explicit definition of
clearly defined terms, their meanings, and their relations to each
other make it possible to store data and information in a seman-
tically organized way and represent knowledge sustainably.[37,38]

Ontologies are developed for a wide range of different use
cases; however, they usually don't have reusability in mind,
ending up with monolithic, single-purpose ontologies. To enable
a more structured development process and better reuse,
modular/layered ontology architectures have been developed.
Depending on the degree of detail and the formal expressiveness,
different types and levels of ontologies can be distinguished:
upper-, foundational-, or TLOs, MLOs, and domain ontologies.
TLOs represent the most abstract, independent level.
Intending to interconnect as many ontologies as
possible, the design incorporates universal and fundamental
concepts to ensure expressiveness and generality across a wide
range of domains. MLOs are based on TLOs and enhance their
structure. Entities are represented more fine granularly, and they
have meaning in different domains. MLOs also bridge the gap
between TLOs and domain ontologies by providing a set of terms
that can be shared among multiple domains, allowing for a
higher degree of modularity. Domain ontologies are very expres-
sive and extend the provided concepts of MLOs with specific
terms of the domain to be represented.[39,40] Ontologies are
widely developed and used since a long time in life sciences.
The controlled vocabulary provided by them, together with stan-
dard identifiers and relationships, enables unified semantic
annotation and description of a biological object within a certain
domain. This allows integrated analyzes and interpretations of
multimodal data.[41,42]

The Gene Ontology (GO) initiated by the Gene Ontology
Consortium in 1998 is one of the most successful ontologies
so far. Three independent aspects form the cornerstones of
the GO to describe the knowledge of the biological domain:
Molecular Function, Cellular Component, and Biological
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Process. The overall goal is to develop an “up-to-date, compre-
hensive, computational model of biological systems from the
molecular level to larger pathways, cellular and organism-level
systems.”[43] The success of GO is based on the fact that experi-
mental knowledge can often be transferred from organism to
organism, especially if they share relevant genes due to common
ancestry. It all started with a common classification scheme for
the gene functions of three model organisms, Drosophila mela-
nogaster (fruit fly), Mus musculus (mouse), and Saccharomyces
cerevisiae (brewer's or baker's yeast). Today, it is possible to
compare homologous gene and protein sequences across the
phylogenetic spectrum of over a thousand organisms.[43,44]

To enable uniform development and integration of different
ontologies from the biological domain, the Open Biological and
Biomedical Ontology (OBO) Foundry was created. The ontolo-
gies of the OBO, the GO is a part of, follow certain guidelines
and principles. This is to ensure that the ontologies are interop-
erable and logically formed while representing biological reality
as accurately as possible.[45–47]

In addition to the OBO, several other MLOs and domain ontol-
ogies refer to the Basic Formal Ontology (BFO) which was initi-
ated in 2002. It is a well-supported and used TLO that has
generalized the concepts of the GO. The BFO is specifically
designed as a developmental framework and connecting point
for science-based domain ontologies. The compact design (which
does not include physical, chemical, biological, or other specific
scientific terms) makes the BFO consistent with other TLOs.
The crossinteroperability of the BFO results from the underlying
definition and partitioning into the most general categories of
entities: continuants and occurrents. Continuants are persisting
entities (uniquely identifiable objects about which information is
to be stored or processed) that exist at a time, such as 3D persis-
tent objects, for example, the cellular component and molecular

function of GO. Occurrents are entities that occur, such as
primarily time-dependent events or processes that are conceived
in successive phases or occur at a particular time interval, for
example, the biological process of GO. As granular extension
through midlevel and domain ontologies is done in a top–down
approach, it is important to understand the semantic framework
of the BFO architecture.[48–50]

The European Materials Modelling Ontology (EMMO) is the
result of efforts by the European Materials Modelling Council
(EMMC) to present a standardized ontology framework for
describing, processing, characterizing, and modeling materials
and their properties. This successful upper- and midlevel
ontology is based on a physical and materials science worldview
developed in a bottom-up approach, in contrast to the BFO. Thus,
low-level concepts, for example, from the perspective of experi-
mental physics or scientific application, serve to develop the
upper conceptual layers of the ontology. This ensures that the
TLO concepts of EMMO can be understood by users without
a philosophical background.[51,52]

Other important TLOs and initiatives include the Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE), the
General Formal Ontology (GFO), the Suggested Upper Merged
Ontology (SUMO), and the Industrial Ontologies Foundry (IOF)
initiative.[53–60]

Basically, the main use of TLOs is to enable semantic interop-
erability of ontologies across multiple domains. As an architec-
tural framework, TLOs provide general concepts that are
common to all domains and thus are particularly useful as an
ontological blueprint in development. Following the inheritance
principle, constraints are propagated to the domain level
(Figure 1). Thus, TLOs provide a proven means for verifying
basic ontological relationships. In principle, domain ontologies
oriented to the same TLO are compatible with each other.

Figure 1. Hierarchical representation of relevant ontologies. A higher position in the representation means a higher level of abstraction. The examples of
ontologies shown in the two lower levels are currently being developed by the Mat-o-Lab initiative. Using the example of the micrometer gauge, a device
used to accurately measure specimen dimensions in the tensile test, specific-related entities are assigned according to the ontology levels (inheritance
principle).
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Noticing problems in the adoption and reuse of ontologies in
the industrial domain, the Industrial Ontologies Foundry
(IOF)[61] was created as a counterpart to the OBO Foundry.
Developed by some of the same initiators, it adapts the OBO
ontology architecture to the requirements of the industrial and
engineering domain using the same open, community-based
approach that has led to OBO's success. The IOF promotes
the design and development of industrial ontologies by providing
and formulating common principles, guidelines, and best prac-
tices. In addition, working groups take care of the maintenance,
updating, and documentation of designated ontologies, which
will also support the creation of domain-specific standards.
The IOF ontologies are organized similarly to OBO ontologies,
with top- and midlevel ontologies, with the BFO as the desig-
nated TLO, and the common core ontologies (CCO)[39] among
others, forming the midlevel. The IOF goes one step further
and splits the domain ontologies into the two subcategories,
“domain upper level” and “domain-specific ontologies,” to both
drive the development of modularizable domain ontologies and
ensure interoperability and reuse of these. This subdivision is a
consequence of the ontology architecture that introduces a dedi-
cated and abstract mid level. Other ontologies such as EMMO or
MatOnto[62] do not require this subdivision as their midlevel is
not abstract but domain specific.

While a certain number of developed ontologies from the field
of MSE already exist,[25] it must be stated that that many of these
material ontologies cannot be reused because they are not based on
the BFO, and thus compatibility issues with the IOF would arise.

The ontology architecture used in the Mat-o-Lab project fol-
lows IOF approach due to its open nature, extensive documenta-
tion, high granularity, and expressivity of the ontologies.
Accordingly, Mat-o-Lab uses the BFO as the top level and the
CCO as the mid-level (Figure 1).

The midlevel of the CCO supports the representation of a wide
range of entities. While the chosen level of abstraction does not
permit direct annotation of MSE data, it does allow for the sim-
plified development of domain ontologies as extensions of it. By
following principles, the CCO stack provides a vocabulary that
can be used to express complex relationships while remaining
interoperable.[63] As an extension of the CCO, the Materials
Science and Engineering Ontology (MSEO)[64] was developed,
which is a domain upper-level ontology for materials science.
Similar to the IOF approach, different working groups within
Mat-o-Lab are involved in the development of MSE domain-
specific ontologies, such as the Tensile Test, the Ultrasound,
or the Fiber Structure Ontology. With respect to extensibility,
reuse, and interoperability, the approach of designing the ontol-
ogies as independent modules is also pursued here. In the long
term, these ontologies will be extended by others from the fields
of mechanical testing and material structure. An important task
will be to update, maintain, and add to them as necessary, with an
emphasis on standardization and reuse by the community.

4. Domain-Specific Ontologies: Development and
Application

Domain ontologies are used to describe organized and structured
material science knowledge in such a way that it can be read,

understood, and processed by computers. Specific material sci-
ence methods and processes as well as characterization paths can
be mapped by corresponding material concepts and their rela-
tionships to each other. This allows material research data and
its related information to be semantically organized to enable
knowledge representation. At this ontological level, material
concepts acquire high expressiveness using material science
domain-specific vocabulary, definitions, facts, statements, axi-
oms, rules, and relations.[17] A basic requirement for the accurate
representation of domain ontologies and the specific knowledge
is therefore the involvement of MSE experts in the otherwise
heavily computer science-driven development process.

Several guidelines are available that are recommended to be
used as a basis for the creation of ontologies, the so-called
“Ontology Engineering Methodologies” (OEngMs).[65] Therein,
different stages, tasks, and actors as well as sequences of their
interaction are defined with respect to ontology development.
There are a variety of typical OEngMs available.[66]

The explicit definition of classes, properties, and instances as
well as the transformation to the formal ontology language is pos-
sible with tools such as Protégé developed by Stanford
University.[67,68] For instance, Protégé allows the construction
of a hierarchical order of concepts and classes and the definition
of rules in a neatly arranged structure to include knowledge
about the relations of concepts. After having the ontology
available, experimental data can be mapped accordingly. Thus,
raw data, characteristic values, metadata, and data gained from
simulations are stored following the ontology, that is, they will be
able to be queried with explicit references. Tools such as
OpenRefine[69] and OMERO[70] are suitable for such mapping
procedures as they allow the annotation of experimental data
in all common data formats. As ontology development is an inno-
vative discipline, especially in the field of MSE, useful tools and
converters continue to be generated.

Following the procedure for MSE domain ontology develop-
ment in Mat-o-Lab (Figure 2), which is in accordance with typical
guidelines, information on and parameters of the materials and
processes to be described need to be collected, first. In this
respect, standards and norms, scientific literature, manuals,
and for example, also the header information of experimental
data files are sources of information and knowledge. In addition,
expert knowledge gained from interviews with scientists, engi-
neers, and technicians is crucial to include their valuable experi-
ence. Due to the nature of standards to name and define terms,
symbols, and processes in a specific context, they comprise infor-
mation on syntax, semantics, and taxonomy that was further-
more already agreed on by a group of experts in a certain
field (standardization committee). Therefore, the usage of stand-
ards as a starting point for the identification and definition of
entities in a distinct domain such as, for example, the description
of a test method, is considered to be a reasonable approach to
facilitate the development of ontologies. Standards also provide
an orientation for the structuring and categorization of entities
and concepts that are represented by classes in the ontology.

Based on datasets resulting from specific processes and
experiments, a process template is generated in Mat-o-Lab.
This is enriched by valuable contextual information, so-called
metadata (e.g., specifications of machines and software, project
information, laboratory equipment, etc.). This results in a
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human- and computer-readable representation of, for example,
the process or the experiment. A variety of tools is available
for ontology creation that support developers in collecting and
visualizing information, drafting process schemes and templates
to be represented, and transforming knowledge into the final
ontology using proper formal language. The collection of
concepts and parameters as well as their categorization and struc-
turing in natural language can easily be performed using the
well-known spreadsheet or mind managing software. For the
creation of process schemes, the KnowledgeBase Builder by
InfoRapid[71] is one well-suited option as it allows for a taxonomic
representation of processes in which entities, classes, and
properties are marked, respectively. Converter apps developed
in Mat-o-Lab then facilitate the enrichment of the created process
schemes with uniquely assigned ontology terms, the creation of
unified process templates, the instantiation of classes and prop-
erties, and the assignment of values and information to corre-
sponding ontology entities.

The development of domain ontologies enables the integra-
tion of experimental data and the associated contextual informa-
tion, that is, the metadata, in data repositories. The structured
and stringent mapping of various methodological procedures
in process templates creates a digital, comprehensible,
human-, and machine-readable representation of materials
science reality. This standardizes data formats, supports further
use and thus comparability, and paves the way for the creation of
automated data pipelines. Furthermore, the high degree of gran-
ularity offered by the chosen ontology architecture together with

the semantic expressivity and background knowledge emended in
the standards-based ontologies developed in the project enable the
execution of logical rules, that are implemented in the form of
SHACL shapes and constraints in the pipeline, and perform vari-
ous validation tasks.[72] These tasks include the verification of adher-
ence to the standard, validation of the correspondence of the values
to the measurement units and ranges, detection of missing values
or metadata, as well as an overall dataset quality estimation.

For the advancement of ontology development in the field of
MSE, there is a need for comprehensible, application-related use
cases. Within the Mat-o-Lab projects, dedicated examples are
considered in the first stage, including, for example, the detailed
digital representation of the classical mechanical tensile test.
This widely used and well-standardized test method, with which
comparable material parameters are generated, has the potential
to appropriately convey the profitable benefits and advantages
that arise using ontologies.

5. Concept of Data Framework and Data Space

The aforementioned strategies ensure that datasets of a
standardized content and structure are created. However, their
integration and application require a dedicated infrastructure
in which datasets can be created, curated, aggregated, and ana-
lyzed. The concept of such a data framework and how it might be
integrated into a decentral data space is outlined in Figure 3.

Starting with referenceable raw data with a known uniform
resource identifier (URI) or, more specifically in this case, a

Figure 2. Procedure for domain ontology development within Mat-o-Lab. Reproduced with permission. KnowledgeBaseBuilder logo, 2022, Ingo Straub
Softwareentwicklung; Protégé logo, 2022, The Board of Trustees of the Leland Stanford Junior University; Omero logo 2022, University of Dundee & Open
Microscopy Environment; and OpenRefine logo, wikimedia.
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uniform resource locator (URL) file in a repository, it allows
metadata to be created that further describes the origin and
the context of those files. Mat-o-Lab supports comma-separated
value (CSV) files and image data in various formats, which rep-
resent a large part of the file types from the MSE domain.

The CSV files provided are usually very inhomogeneous in
their structure and the data presented. They may differ, for exam-
ple, in the encoding and delimiters for the columns, the decimal
format, the amount of header information, and often even

contain valuable information in an additional header row before
the tabular data (i.e., the actual content of the CSV files).
Therefore, metadata is generated to describe this additional
information and provide context for reading the CSV files using
a tool from our toolbox called CSVToCSVW.[73] It utilizes the
vocabulary for CSVs on the web (CSVW) provided by W3C to
create individual metadata in JavaScript Object Notation for
Linked Data (JSON-LD) format, without any further input from
a user.

Figure 3. Data framework and data space integration of theMat-o-Lab initiative. Reproduced with permission, RML.io, 2022, IMEC/Ghent University; OME logo
under CC BY 4.0, RDF; JSON-LD logo under CC0; YARRRML logo under CC BY 3.0; draw.io logo under CC BY 4.0; and Chowlk logo under Apache License 2.0.
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Image data, in turn, are converted to OME-TIFF as interme-
diate format by extraction of metadata of various proprietary
image formats used in the microscopic domain with the help
of the bioformat library.[74] As a community developed tool, it
allows reading more than 140 proprietary formats. The services
can be used as part of an image server application called
Omero,[70] which has an integrated web application and viewer
and provides static URLs for all imported images, including sev-
eral API endpoints where metadata can be extracted.

To enrich the data, the metadata extracted from the files is
combined with method graphs that represent the specific chain
of processes, equipment, specifications, and objects relevant to
producing the results. Because of the diversity of methods, a
toolchain is provided for domain experts to draw these method
graphs using freely available software. The graphs are
constructed in draw.io,[75] which can be used at the public
web platform.[76] The shapes necessary are provided by a library
of the Chowlk Converter.[77] The resulting xml files can then be
converted to turtle syntax using a web service,[78] by running the
python code, or with a runner of a GitLab repository.[79]

The information contained in the metadata file and the
method graph are then mapped to each other using the
MapToMethod[80] tool. The tool's simple UI allows a user to point
to a metadata file with a URL and select the method graph to map
against. The use of CCO concepts allows querying for all infor-
mation artifact bearing (IAB) instances in the metadata file and
information content entities (ICE) in the method graph. UI ele-
ments are provided to the user, and an inherent mapping IAB
can be selected for each ICE. The result is a YARRRML[81] file
that captures the mapping in the form of mapping rules in a
human-readable form. The file can be easily converted to
RML[82], the less readable but state-of-the-art mapping language
of the sematic web, or to JSON-LD. The RDF data, from the meta-
data file, the method graph, and the mapping will then be
merged into an RDF dataset using the outlined, but not yet fully
developed, RDF converter.[83] In the process, the resulting RDF is
to be curated. The design foresees using SHACL shapes[72] for
this purpose. If the validation is successful, the RDF file is placed
into a repository where it can be easily processed by a knowledge
base triple store.

In this way, very heterogeneous data files from the domain can
be combined into a central “Knowledge Base.” The figure shows
how this fits into a data economy from the perspective of a peer
participating in this data space. The knowledge base would be
exposed to the users by a UI where they will interact with the
Toolbox to create their data pipelines. At this stage, it is useful
to integrate data from external databases (e.g., a legacy database)
to provide additional information, such as measurement devices,
locations, business units, or costs. This data may not be made
public but must be tracked to ensure a high level of data
interoperability.

The developed domain ontologies described in the previous
chapter are made available to all data space participants by a
“Vocabulary Provider” via the ontology portal MatPortal.org.[84]

Utilizing the International Data Spaces (IDS) architecture[85]

prevents any data leakage/loss and ensures full data sovereignty
of the data providers. In this approach, each peer hosts its own
triple store, containing the datasets along with metainformation,
in the data space. Its participants are identified and authorized by

a central identity provider, while all datasets are fully traceable by
their unique resource identifiers (URIs). Datasets can be pub-
lished by exporting the selected data to a central data broker
of the dataspace through the Connector by selecting the applica-
ble publication policy (e.g., public, specific peer, etc.).

The “data space broker” instance, to which all peers have
access, transmits only the approved data according to policy over
a secure transport layer. This makes it possible to query, aggre-
gate, and request another peer's datasets via certified “data space
applications” if the corresponding permission is available. Using
this functionality, specific applications and digital workflows can
address individual problem solving and data analysis issues by
submitting appropriate automated queries to the data space bro-
ker. The user, as a data space peer, will have access to all data
available to him in the broker, as well as all data in his knowledge
base, as if interacting with a central data store and not a federated
data space.

6. Scientific Simulation and Data Processing
Workflows

In recent years, the development in scientific computing has
been very dynamic and there are many different specialized tools
and procedures available. Analyzing and processing scientific
data generally is a complex task that often involves many differ-
ent steps to be performed in sequential order. This includes pre-
and postprocessing of experimental data (e.g., the generation of
RDF data), subsequent analysis of multiscale simulation models,
or ML types of procedures that are usually based on different
models that are coupled either sequentially or even are called
in a cyclic order. The challenge is to combine these tools into
an automated, reproducible workflow that can be shared with
other researchers with complete documentation of all intermedi-
ate results, because only then the complete reproducibility of all
data stored as an output of such a workflow can be assured.
This could be a pure experimental data processing workflow that
performs the annotation of the data or a complex simulation
workflow coupling different simulation models.

In this context, a workflow is a combination of different
software modules that are independently developed and can
be combined sequentially, in parallel or in a cyclic order, with
dependencies of their inputs/outputs and together provide
new scientific knowledge.[86,87] The connection and execution
of these individual modules is performed in a workflow manage-
ment system (WMS). The requirements for a workflow system
can be summarized as follows.[86] 1) Data exchange between
and within the different modules; 2) embedding heterogeneous
modules into a common framework with a definition of rela-
tions/dependencies including a portable data structure; 3) hierar-
chical allocation and provisioning of resources (ranging from
individual jobs of a single user up to the coordination of all users
with all their jobs on a cluster); 4) execution and scheduling
including task launching and data transfer must be coordinated.
In particular, this includes observational workflows with sched-
uling instruments and experimental workflows with manual
tasks (e.g., lab tests that are not automated or require some man-
ual input); and 5) tracking the provenance and monitoring and
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validation of the data workflow as well as the simulation
processes.

The definition of the dependencies between different modules
is often defined through a direct acyclic graph (DAC). However,
such a static definition might lead to limitations that could be
avoided by dynamic generation of the dependencies, taking into
account intermediate results.[88] This is, from our perspective,
most relevant for situations, where callback functions are used,
for example, in a (Bayesian) optimization of model parameters.
The steps within the optimizer depend on the forward model to
optimize and vice versa; thus, there is cyclic dependency that is
difficult to capture with a DAC. A difference between existing
WMS is the UI. Most WMS define the workflow through a script-
ing language that, based on a preprocessing step, builds the
computation graph.[89–92] Other tools such as AiiDA[93] directly
provide an interface to the programming language. Other
options are Jupyter notebooks as used, for example, in
Pyiron,[94] where individual modules are directly implemented
in the workflow environment and then connected via a notebook
that can be shared and executed online. In a similar approach,
AiiDAlab[95] provides a cloud platform to set up, exchange,
and execute workflows. In addition, Snakemake[96] is also a pop-
ular workflow system that also provides support for execution of
steps on external HPC resources.

One example of a scientific workflow is the generation of a
reproducible journal paper that publishes the results of multiple
simulation workflows. An example of a paper workflow can
be downloaded via Zenodo.[97] This includes a hierarchical
Pydoit-based workflow implementation[98] that covers the
complete generation of the paper, from input parameters over
all simulation steps up to the postprocessing of individual graphs
as well as the LaTeX compilation of the paper. The compute envi-
ronment is provided via a docker container; alternatively, Conda
and PyPy can be used, but they do not provide information on the
operating system itself. An important feature from our perspec-
tive is caching and only selective recomputation of steps whose
dependencies have changed. This is because the main effort in
this use case is setting up the workflow with iterative modifica-
tions within some processing steps of the complete workflow.
Having set up a workflow system right from the beginning
ensures data transparency and reproducibility in accordance with
typical guidelines on scientific publishing.[99]

A challenge for the future is the integration of standardized
ontology-based data nodes that can be used by multiple packages
which require the same inputs and outputs (with the structure
defined by an ontology). An interesting approach is the common
workflow language[100] to define software- and hardware-
independent portable workflows. An overview of workflow tools
with examples and a discussion of their advantages is published
in the study by Ashby et al.[101]

7. Parameter Identification and Model Calibration
of Physics-Based Simulation Models

Generalizing experimental information to other setups can
be either done by a pure data-driven approach, that is, interpo-
lating or extrapolating the data using ML approaches to other
situations not considered in the experiment or by generating a

physics-based simulation model that correctly represents the
problem at hand. As there are often only a limited number of
datasets available, the latter approach usually has the advantage
that the number of free parameters in these models is rather
limited and thus the number of data points required to
calibrate/train these models is significantly reduced compared
with a purely data-driven approach. On the other hand, the
physics-based modeling assumptions are constraining the solu-
tion space and might not adequately represent the real physics;
thus, there is always a model bias. This was expressed by George
Box with the famous phrase “All models are wrong, but some are
useful,”[102] which is particularly true for situations that are
related to cracking, failure, damage, or other “extreme” condi-
tions (high temperature, pressure, etc.) for the material.

Consequently, any model prognosis is naturally not a deter-
ministic value, but rather a probability distribution. Model
calibration in form of identification of model parameters by
numerically solving inverse problems with Bayesian methods
or classical regularization has a long tradition.[103] The idea of
Bayesian inference is to combine prior knowledge, for example,
using a probability distribution both on the parameter level or
potentially also on the model level together with a likelihood
function that characterizes the conditional probability that
observed measurements were created from the model given
the parameters. Using Bayes theorem allows computing poste-
rior estimates of the model parameters that could subsequently
be used for prognosis purposes. However, there are several
challenges related to this approach. 1) The computation of the
posterior is usually intractable.[104] Therefore, approximation
methods such as Markov Chain Monte Carlo methods
(MCMC) are often used. There are a variety of different sampling
schemes available[105] and implemented in different software
packages. We are using Emcee,[106] Pyro,[107,108] and
PyMC3[109,110] that differ in the way samples are generated, if
derivatives of the likelihood function can be computed, what
is to be computed (e.g., posterior parameter distribution, model
evidence, point estimates vs. distributions), and potentially
including additional prior knowledge; 2) The computational
effort of a single forward model evaluation is often computation-
ally expensive; higher-order derivatives might not be available.
Consequently, a specific response surface based on the proper
general decomposition is developed.[111] This allows to perform
a (computationally more demanding) computation before the
model calibration task and build an Abaqus of the full model.
In the subsequent model calibration task, the full model is
replaced by the Abaqus that can be evaluated in real time.
3) Neglecting model discrepancies and calibrating insufficient
models lead to biased parameter estimates and model
predictions.[112] Therefore, we propose to identify model bias
by adding additional terms to the model with an automatic rele-
vance determination (ARD) prior in combination with variational
approaches to select only the relevant terms that better explain
the data.[113] This is an iterative process allowing the user to sub-
sequentially improve the models. 4) In many situations, it can be
advantageous to include additional knowledge about the simula-
tion model into the calibration procedure. This is particularly
true for situations, where a significant model bias is expected
(as is often the case for failure models due to an insufficient
model in these extreme scenarios or due to randomness in crack
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localization). Applying methods such as FEMU-F[114] with sto-
chastic models[115] allows improving the quality of the calibra-
tion. The essential idea is to interpret the finite element
model (FEM) solution as a stochastic variable (or random field
when taking into account correlations) that is identified.
Besides the terms related to the discrepancy between the mea-
sured and identified fields, the likelihood contains terms related
to the residual of the underlying partial differential equation.
5) Correlations both in the data and in the parameters are present
that must be considered but are often difficult to be described
objectively. The correlation structure can be characterized by
additional hyperparameters that are simultaneously identified
together with the model parameters. An alternative is to use
the model evidence (e.g., computed using nested sampling[116]

or approaches based on the evidence lower bound which are
often directly computed in variational approaches) and compare
different choices for these hyperparameters.

Finally, the result of a model calibration using Bayesian infer-
ence is often reused in subsequent computations (e.g., when
using the calibrated parameters of a model calibrated with lab
data to predict properties for an industrial use case). As a result,
it is of utmost importance to store in a database not only the final
result (i.e., a posterior distribution of the model parameters) but
to also include the characteristics of how those parameters have
been obtained. This includes, for example, the (experimental)
data, the models including the compute environments within
a scientific workflow, the definitions of priors and likelihood
in a probabilistic graph, as well as the inference engine used.
Consequently, an ontology to describe this calibration process
is developed within Mat-o-Lab to characterize the calibration pro-
cess together with the model parameters and ultimately allow
publication of all this data to describe the complete data
provenance.

8. Toward a Platform-Supported, Data-Driven
Research Approach in MSE

ML-based analysis of materials data has shown great success in
predicting material properties for a variety of materials, from
ordinary Portland cement[117] to aluminum alloys[118] and super-
conductors,[119] to name a few. The key concept is to match
empirically observed sample characteristics with experimentally
confirmed (or simulated) materials properties. ML exploits
patterns and correlations influenced by several, intermixed the-
oretical concepts and multistage, complicated processes in the
data, that cannot be described with a closed formulation.[120]

Specifically, the task of ML is often to find desired materials
properties in a high-dimensional search or discovery space (DS)
spanned by millions of possible material mixtures, of which only
a small fraction of material properties has been experimentally
explored.[121] The challenge for the ML model is to make the best
use of the limited knowledge from the few available data points to
effectively explore the DS. Ultimately, closing the loop between
exploration with very little available data (as is often the case
when faced with a novel research problem), through ML and
leveraging knowledge from ontologies, could enable the next
generation of self-improving materials research with ML.

Cyber infrastructures, such as Mat-o-Lab, can play a central
role to form a shared intelligent materials data ecosystem.
They provide digital tools to enrich data with information along
the process of materials science knowledge creation (including
the most detailed parts of the domain expertise) to create increas-
ingly detailed data that seamlessly integrates with ML tools.

However, many ML models require large amounts of data for
making predictions. For new materials, hundreds to thousands
of laboratory tests would be required. The generalizability of
existing models to new materials outside of the training data
is additionally challenging.[122] These circumstances are a great
obstacle for practical applications of ML in MSE. Using the broad
information from only a few samples remains one of the central
challenges.

To get by with less data, sequential learning (SL) is frequently
recognized as having great potential to accelerate materials
research.[121,123] Instead of making accurate predictions about
a particular set of experiments, SL sorts them according to their
expected utility. This is done by coupling the predictions of a ML
model with a decision rule that guides the experimental proce-
dure. Each new experiment is selected to maximize the amount
of useful information, for example, according to Lindley,[124]

using previous experiments as a guide for the next experiment.
The underlying idea is that not all experiments are equally useful.
Some experiments provide more information than others. In
contrast to the classical design of experiments, where (only)
the experimental parameters are optimized, the potential out-
comes of the experiments themselves are the decisive factor.

SL was used for experimental material data from the
laboratory, for example, for the search for suitable alloys or
cement.[125–127] However, almost exclusively examples exist in
the literature that show the potential of SL methods based on
simulated experiments, where the ground truth labels for all data
points are already known. Yet even in simple statistically
motivated scenarios, specific performance is usually highly
dependent on the data and the problem, that is, what information
is available and what is the sought-after target. The exact relation-
ships are still largely unknown.[128]

In practice, data from multiple experiments often have gaps,
for example, when experimental design or resource availability
do not allow data collection. This does not necessarily mean that
the data are incomplete but is due to the rationale that the cost
and effort of data collection must be proportional to the expected
gain in knowledge, that is, data from which no gain in knowledge
is expected are not collected. However, most ML approaches
require invariant tuples and are not designed for constantly
changing scenarios. The relatively new field of graph-based
ML overcomes this by capturing the data in its context as a graph.
This has led to elegant solutions for predicting the properties of
crystals[129] or reducing the error of concrete properties
predictions with incomplete data.[130] Work from other fields
(toxicity prediction,[131] zero-shot image classification,[132] trans-
fer learning[133]) shows that ontologies can be used as the
underlying graphs. The integration of structural information
from ontologies in ML has the crucial advantage that empirical
observations are not required for each case under investigation,
but existing knowledge that has been modeled into the ontology
can be transferred.
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In conclusion, ML and SL benefit frommaterial data platforms
such as Mat-o-Lab as a source of high quality and detailed data. In
addition, ontologies as comprehensive knowledge frameworks
could play an important role in developing the next generation
of intelligent algorithms that are able to better process incom-
plete data and novel scenarios.

9. Summary and Outlook

In the present work, the state of the art and current perspectives
of digital knowledge representation in MSE were discussed,
yielding the following conclusions: 1) Innovation in MSE is fos-
tered when materials data with their contextual information is
made available, discoverable, interoperable, and reusable for
research and industry. 2) The initiative Mat-o-Lab provides the
potential of establishing a newly developed collaborative
framework for data-driven materials research and engineering.
3) The conceptualization, collaborative work structure, and tech-
nical implementation of the Mat-o-Lab platform and its upcom-
ing connections to a data space environment were outlined.
4) Ontologies are a core component as domain expert-guided
knowledge representations for semantically structuring data in
machine-processable formats, providing a valuable basis for
modern data-driven methods of ML, modelling, and simulation.
By linking these elements, the Mat-o-Lab concepts support
advanced materials research and development approaches.

In a nutshell, Mat-o-Lab empowers the field of MSE by
upgrading its (meta)data infrastructure to semantic web stand-
ards according to the well-approved linked open data (LOD)
principles. In the near future, this bears the potential to funda-
mentally enhance and accelerate the dissemination of MSE
research results. One possible scenario is an effective new route
for knowledge distribution as a direct alternative to the current
state-of-the-art in which results are published in peer-reviewed
articles. In this well-established but somewhat outdated
dissemination process, the metadata and the contextualization,
interpretation, and annotation of the data are written out in a
verbose form.

As the ontologies for experimental tests and experiments
developed within Mat-o-Lab include a comprehensive and unam-
biguous digital representation of the analog process description,
they immediately act as a sort of digital twin (digital representa-
tion) and can at the same time be translated into scripts for highly
automated systems. In the same way, they directly allow a
computer to compare experimental results with simulated
predictions. Thus, they bear the potential to act as the ideal
framework for smart autonomous research, in which robot-
supported synthesis with parameters based on in silico simula-
tions is iteratively optimized toward a desired property, which is
also determined in the same loop. As discussed earlier in more
detail, an unambiguous digital representation of scientific experi-
ments including contextualized metadata and results potentially
opens the door to a long-anticipated evolution of scientific publi-
cation of results. In accordance with the proposed FAIR data
principles, the coming paradigm of knowledge dissemination
should encourage the direct publication of data, ontologies,
and workflows also outside of scientific articles. The
Mat-o-Lab framework allows for such a publication of citable and

annotated data including contextualization without having to go
the detour of verbose explanatory text.

The short road of LOD history is paved with unique success
stories, most of which use the data along a path different from
the originally designated purpose. In most cases, the resulting
creative and sometimes even unconventional solutions could
not be foreseen prior to the provision of the respective data.
Just a few examples are social networks, unified traffic services,
or legal tech. In the same way, Mat-o-Lab will bring forth collat-
eral, indirect innovations. Potential outcomes are a faster form of
patenting novel processes simply by staking the claim on certain
combinations of literals within a given ontology framework or
fully machine-readable norms in the form of semantic operating
protocols. While the first would vastly accelerate research, the lat-
ter would help facilitate new technologies into safety-relevant
fields of application.

This semantic framework introduced in Mat-o-Lab is not with-
out competition and is only one possible framework. In other
data provision technologies, the selection process toward one
widely used standard is typically decided by the amount of acces-
sible content while in other technologies the user-friendliness
usually plays a pivotal role. A unique asset of the Mat-o-Lab
framework is the fact that the orthogonal skillsets of complex
semantic database design and complicated domain science are
separated by predefining TLOs and MLOs and providing a
step-by-step DIY instruction to translate the domain-specific
expertise into a domain ontology without any previous training
or knowledge in data science. This feature directly addresses the
abovementioned quality gates by being user friendly and by
inherently carrying the potential to become widely filled by
nontrained domain scientists. We are, thus, optimistic that
the Mat-o-Lab framework is an attractive pathway to laboratory
digitalization and will soon mature to an accepted data handling
standard. This progression is facilitated not only by its open
structure and context but also by its strong emphasis on cowork-
ing. Mat-o-Lab lives a collaborative spirit and is always strongly
encouraging peers to join the team. Its agile management allows
cooperation partners to contribute not merely content but code-
termine the structure of the ontologies and actively shape the
framework.
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